

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Isolation and Recovery of Dicarboxylic Acids

C. H. Walker^a

^a The Philadelphia College of Textiles and Sciences, Philadelphia, Pennsylvania

To cite this Article Walker, C. H.(1967) 'Isolation and Recovery of Dicarboxylic Acids', *Separation Science and Technology*, 2: 3, 399 — 400

To link to this Article: DOI: 10.1080/01496396708049709

URL: <http://dx.doi.org/10.1080/01496396708049709>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Isolation and Recovery of Dicarboxylic Acids

C. H. WALKER

THE PHILADELPHIA COLLEGE OF TEXTILES AND SCIENCES
PHILADELPHIA, PENNSYLVANIA

A means of separating and isolating certain dibasic acids from solution was found during the course of a systematic investigation of stoichiometric urea-dicarboxylic acid complexes. The first publication (1) resulting from this work described the structure and the method of preparation for the insoluble urea-dicarboxylic acid complexes from the soluble dibasic acids in solution. In the present report we wish to describe a method for recovering these acids from their complexes.

The complexes included in this study were $\text{HOOC}(\text{CH}_2)_n\text{COOH} \cdot 2\text{H}_2\text{NCONH}_2$ for $n = 0, 2$ to 5 and $\text{HOOCCH}_2\text{COOH} \cdot \text{H}_2\text{NCONH}_2$. These stoichiometric complexes or molecular compounds of urea should not be confused with the nonstoichiometric urea inclusion compounds (2). Using a standardized procedure, we were able to recover the dibasic acids from their complexes. Each complex, after being dissolved in water and acidified, was continuously extracted with ether. The organic matter isolated from the ether was tested for nitrogen and its neutralization equivalent was determined. The results obtained appear in Table 1. Table 1 shows that only the recovered oxalic and malonic acids were contaminated by urea. In both cases the percentage of urea was less than 0.05%. The presence of urea in these two cases is due to the fact that both acids are much stronger than the higher homologues and both form salts with urea in aqueous solution. It appears that when the aqueous solution is acidified with HCl, a small quantity of this salt persists in the solution and is slowly extracted by the ether. The higher homologues which form H-bonded complexes rather than salts are easily broken apart by HCl, so that the dibasic acid-urea complex is for all practical purposes absent.

The recoveries of acid from the complex were high enough to make such a procedure practical for isolating dibasic acids (1). Although the original procedure was directed toward obtaining complexes of maximum purity, the method of preparation could easily be modified using larger quantities of urea to increase the yield of insoluble acid complex. This urea could also be recycled.

TABLE 1
Recovery of Acids from Complexes

Complex, m.p.	% by wt. ^a	Recovered acid	M.p. (lit.) ^c
	% Urea ^b		
Oxalic acid·2 urea, 140–151 ^d	86.8	.02	155(189)
Malonic acid·urea, 89–91	98.2	.04	148–155(135.6)
Succinic acid·2 urea, 134–40	97.9	0.00	182–185(185)
Glutaric acid·2 urea, 127–30	96.8	0.00	85–93(95–96)
Adipic acid·2 urea, 107–12	96.2	0.00	136–148(151–153)
Pimelic acid·2 urea 127–132	97.7	0.00	92–100(103)

^a The percent by weight of recovered acids was determined by titration of an aliquot of the recovered acid dissolved in water with N/10 sodium hydroxide with a phenolphthalein indicator.

^b The percent urea was calculated from the percent nitrogen assuming all nitrogen came from urea.

^c All the literature-reported values of the melting point of the dibasic acids were obtained from either the *Handbook of Chemistry and Physics*, 43rd ed., or *Langes Handbook of Chemistry*, 6th ed.

^d Uncorrected melting points were determined on a Fisher-Johns melting-point block.

One gram of complex was dissolved in 50 ml of water and acidified with 3 ml of concentrated hydrochloric acid. The solution was extracted with ether in a continuous extractor for 24 hours. The ether solution was divided in half and each portion was evaporated to dryness. One portion was dissolved in water and titrated with N/10 sodium hydroxide using a phenolphthalein indicator. The second portion was used to determine nitrogen, if present.

The procedure used to prepare the complexes was reported previously (1).

REFERENCES

1. J. Radell, B. W. Brodman, and J. J. Domanski, Jr., *18th Southeastern Regional Meeting of the American Chemical Society, Louisville, Ky.*, Oct. 1966, A45.
2. W. Schlenk, Jr., *Ann.*, **565**, 204 (1949).